Growth Mechanism and influence of annealing temperature on structural and compositional properties of Cu2ZnSnS4 (CZTS) thin films deposited by RF sputtering method from a compound target.

Authors

  • S. Abdullahi  Department of Physics Usmanu Danfodiyo University Sokoto, Nigeria
  • M. Momoh  Department of Physics Usmanu Danfodiyo University Sokoto, Nigeria
  • A. U. Moreh  Department of Physics Usmanu Danfodiyo University Sokoto, Nigeria
  • A. M. Bayawa  Department of Pure and Applied Chemistry Usmanu Danfodiyo University Sokoto, Nigeria
  • B. Hamza  Department of Physics Usmanu Danfodiyo University Sokoto, Nigeria
  • G. M. Argungu  Department of Physics Usmanu Danfodiyo University Sokoto, Nigeria
  • O. T. Popoola  Department of Mechanical Engineering Florida International University Miami, Florida, U.S.A

Keywords:

RF sputtering, Cu2ZnSnS4 thin film, annealing, growth mechanism, renewable energy.

Abstract

Kesterite-type Cu2ZnSnS4 (CZTS) thin films were deposited on corning glass from a single quaternary target. In this study, we report the growth mechanism and the influence of annealing temperature on the structural and compositional properties of CZTS films. All the four samples (as-deposited inclusive) show peaks corresponding to kesterite-type structure. The diffraction peaks of (112) are sharp and the small characteristics peaks of the kesterite structure such as (220)/ (204) and (312)/ (116) are also clearly observed in X-ray diffraction pattern. Some secondary phases that appeared as a result of the annealing were observed in the Raman spectra. These results indicate that the quaternary CZTS would be a potential candidate for solar cell applications.

References

  1. K. Patel, Shah D.V and Vipul, K., "Effects of Annealing on Structural Properties of Copper Zinc Tin Sulphide (CZTS) Material". Journal of nano- and electronic Physics, vol, 5(3), pp. 1-4(2013)
  2. Bras, Sterner, J., & Platzer-Björkman, C., "Influence of hydrogen sulfide annealing on copper–zinc–tin–sulfide solar cells sputtered from a quaternary compound target". Thin Solid Films, vol. 582, pp. 233–238(2015).
  3. Chen, X.G Gong, Walsh, A., & Wei, S. H., “Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4". Applied Physics Letters, vol. 96, pp. 8–10(2010).
  4. K Todorov, T. K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., & Mitzi, D. B., “Beyond 11% effi ciency: Characteristics of state-of-the-art Cu2ZnSnS(S,Se)4 Solar Cells". Advanced Energy Materials, vol. 3, pp. 34–38(2013a).
  5. V Bodnar, Telesh, E. V., Gurieva, G., & Schou, J., “Transmittance Spectra of Cu2ZnSnS4 Thin Films". Journal of Electronic Materials, vol. 4, pp. 2–6(2015).
  6. Q Guo, Grayson M. Ford, Wei-Chang Yang, Bryce C. Walker, Eric A. Stach, H. W. H. and R. A., “Fabrication of 7.2% Ef?cient CZTSSe Solar Cells Using CZTS Nanocrystals". J. Am. Chem. Soc, vol. 132, pp. 17384–17386(2010).
  7. Zhou, Zhou, W., Du, Y., Li, M., & Wu., S., “Sphere-like kesterite Cu2ZnSnS4 nanoparticles synthesized by a facile solvothermal method". Materials Letters, vol. 65, pp. 1535–1537(2011).
  8. Tanaka, Yoshida, A., Saiki, D., Saito, K., Guo, Q., Nishio, M., & Yamaguchi, T., “Influence of composition ratio on properties of Cu2ZnSnS4 thin films fabricated by co-evaporation". Thin Solid Films, vol. 518, pp. 29–33(2010).
  9. Nukala, Johnson, J. L., Bhatia, A., Lund, E. A., Hlaing Oo, W. M., Nowell, M. M., Scarpulla, M. A., “Synthesis of Optimized CZTS Thin Films for Photovoltaic Absorber Layers by Sputtering from Sulfide Targets and Sulfurization". Materials Research Society Symposium Proceedings, vol. 1268, pp. 4–9(2010).
  10. W Hong, Shin, S. W., Gurav, K. V., Vanalakar, S. A., Yeo, S. J., Yang, H. S., Kim., “Comparative study on the annealing types on the properties of Cu2ZnSnS4 thin films and their application to solar cells". Applied Surface Science, vol. 334, pp. 180–184(2015).
  11. S Lim, Yu, S.-M., Khalkar, A. R., Oh, T.-S., Nam, J., Shin, D.-W., & Yoo, J.-B., “Comparison of Cu2ZnSnS4 thin films and solar cell performance using Zn target with ZnS target". Journal of Alloys and Compounds, vol. 650, pp. 641–646(2015).
  12. A Fernandes, Salomé, P. M. P., Cunha, A. F., & Schubert, B., “Cu2ZnSnS4 solar cells prepared with sulphurized dc-sputtered stacked metallic precursors". Thin Solid Films, vol. 519, pp. 7382–7385(2010).
  13. F Liu, Li, Y., Zhang, K., Wang, B., Yan, C., Lai, Y., Liu, Y., “In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering". Solar Energy Materials and Solar Cells, vol. 94, pp. 2431–2434(2010).
  14. T Tanaka, Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q., Wakahara, A., Ogawa, H., “Preparation of Cu2ZnSnS4 thin films by hybrid sputtering". Journal of Physics and Chemistry of Solids, vol. 66, pp. 1978–1981(2005).
  15. B.K Kumar, Babu, G. S., Bhaskar, P. U., & Ã, V. S. R., “Solar Energy Materials & Solar Cells Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films". Solar Energy Materials and Solar Cells, vol. 93, pp. 1230–1237(2009).
  16. P Chan, Lam, H., Wong, K. Y., & Surya, C., “Electrodeposition of Cu2ZnSnS4 Thin Films Using Ionic Liquids". Photovoltaic Materials and Manufacturing Issues, vol. 1123, pp. 105–109(2009).
  17. C Riha, Fredrick, S. J., Sambur, J. B., Liu, Y., Prieto, A. L., & Parkinson, B. A., “Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photocathodes". ACS Applied Materials and Interfaces, vol. 3, pp. 58–66(2011).
  18. S Shyju, Anandhi, S., Suriakarthick, R., Gopalakrishnan, R., & Kuppusami, P., Mechanosynthesis, deposition and characterization of CZTS and CZTSe materials for solar cell applications. Journal of Solid State Chemistry, vol. 227, pp. 165–177(2015).
  19. K Sun, Yan, C., Liu, F., Huang, J., Zhou, F., Stride, J. A, Hao, X., “Over 9% Efficient Kesterite Cu2ZnSnS4 Solar Cell Fabricated by Using Zn 1- x Cdx S Buffer Layer". Advanced Energy Materials. pp. 1-6(2016).
  20. I Inamdar, Lee, S., Jeon, K. Y., Lee, C. H., Pawar, S. M., Kalubarme, R. S., Kim, H., “Optimized fabrication of sputter deposited Cu2ZnSnS4 (CZTS) thin films". Solar Energy, vol. 91, 196–203(2013).
  21. P Leitão, Santos, N. M., Fernandes, P. a., Salomé, P. M. P., da Cunha, a. F., González, J. C., & Matinaga, F. M., “Study of optical and structural properties of Cu2ZnSnS4 thin films". Thin Solid Films, vol. 519, pp. 7390–7393(2011).
  22. A Osama & Cheng, Z., “In situ Raman characterization of Cu2ZnSnS4 solar absorber material". IEEE 2015, pp. 1–6(2015).
  23. T Jheng, Huang, K. M., Chen, S. F., & Wu, M. C., “Effects of substrate temperature on the Cu2ZnSnS4 films deposited by radio-frequency sputtering with single target". Thin Solid Films, vol. 564, pp. 345–350(2014).
  24. V Parthibaraj, Tamilarasan, K., Pugazhvadivu, K. S., & Rangasami, C., “Growth and Characterization of Cu2ZnSnS4 Thin Film by RF-Magnetron Sputtering". Ijirset, vol. 4, pp. 670–675(2015).
  25. Abusnina, Moutinho, H., Al-Jassim, M., Dehart, C., & Matin, M., “Fabrication and characterization of CZTS thin films prepared by the sulfurization of RF-sputtered stacked metal precursors". Journal of Electronic Materials, vol. 43, pp. 3145–3154(2014).
  26. Ahmad, Distaso, M., Azimi, H., Brabec, C. J., & Peukert, W., “Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles". Journal of Nanoparticle Research, vol. 15, pp. 1–16(2013).
  27. M Berg & Dale, P. J. 2014. “Kesterites?: Equilibria and Secondary Phase Identification". Pp. 107–132. Published 2015 by John Wiley and Sons Ltd.
  28. Y. H Jo, Mohanty, B. C., Yeon, D. H., Lee, S. M., & Cho, Y. S., “Single elementary target-sputtered Cu2ZnSnSe4 thin film solar cells". Solar Energy Materials and Solar Cells, vol. 132, pp. 136–14(2015).

Downloads

Published

2017-02-28

Issue

Section

Research Articles

How to Cite

[1]
S. Abdullahi, M. Momoh, A. U. Moreh, A. M. Bayawa, B. Hamza, G. M. Argungu, O. T. Popoola, " Growth Mechanism and influence of annealing temperature on structural and compositional properties of Cu2ZnSnS4 (CZTS) thin films deposited by RF sputtering method from a compound target., International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN : 2395-602X, Print ISSN : 2395-6011, Volume 3, Issue 1, pp.95-102, January-February-2017.